Adsorption Technology Research Laboratory


The primary objective of the laboratory's research:

The laboratory conducts research focused on developing modern and innovative energy technologies. The main areas of research include:

  • adsorption refrigeration,
  • desalination of water,
  • thermal energy storage,

As part of the research, methods are being sought to improve the efficiency of adsorption units that utilize sustainable thermal energy sources. These sources include heat generated by solar panels, cogeneration, and industrial waste heat, a byproduct of many technological processes.

The research efforts have led to the development of an innovative cylindrical construction of an adsorption bed, which has been granted patent protection. Moreover, the laboratory's studies have also made significant progress in another innovative approach to adsorption bed configurations, namely the utilization of fluidization. The work on these solutions was carried out within the framework of the following projects:

  • 1.“Research on sorption process intensification methods in modified construction of adsorbent beds” supported by the National Science Centre, Poland, No. 2018/29/B/ST8/00442”
  • 2.“The innovative cylindrical construction of the adsorption bed prototype” (Principal Investigator: dr hab. inż. Jarosław Krzywański, prof. AJD) was funded within the „Inkubator Innowacyjności +” program.
  • 3.„Modelling of contact heat resistance in granular mediums using computational fluid dynamics, (2017/01/X/ST8/00019), National Science Centre”.

Each of these solutions has significantly contributed to advancing knowledge on mass and heat transfer in porous media, as evidenced by numerous publications.

Utilization of modern technologies

Alongside experimental research, the laboratory conducts intensive modeling studies utilizing artificial intelligence (AI) methods and computational fluid dynamics (CFD). Notably, these studies focus on developing tools dedicated to predicting failure states in energy systems, heat transfer processes, hydrogen production, optimizing the operation of power boilers, and adsorption-based cooling and desalination devices. The combination of artificial intelligence methods, computational fluid dynamics, fuzzy logic, and genetic algorithms ensures that the developed solutions exhibit an interdisciplinary character and have the potential for application in other scientific fields. The experience gained so far has enabled the research team members to play a significant role in the following projects:

  • 1.The MsLimitCO2 project "Multi-scale investigation of chemical looping combustion of biomass pellets towards negative CO2 emission" (Agreement No. WPC3/2022/44/MSLimitCo2/2024) was funded under the 3rd Polish-Chinese/Chinese-Polish Joint Research Programme operated by the National Centre for Research and Development (NCBR), Poland and the Ministry of Science and Technology (MOST) of the People’s Republic of China
  • 2.“Investigations of the fluidization process under low pressure conditions”, (2023/07/X/ST8/01229), National Science Centre.

Scope of Research and Equipment:

The full range of research conducted at the laboratory includes:

  • modeling processes, systems, and installations for adsorption-based cooling, water desalination, and energy storage,
  • large-scale modeling of CFB power boilers,
  • designing new adsorption bed constructions with higher efficiency based on experimental and modeling studies,
  • optimizing operational parameters of adsorption beds during the working cycle of adsorption devices,
  • modeling processes and systems for adsorption-based cooling, water desalination, and energy storage,
  • experimental studies on the impact of sorbent doping on the efficiency of adsorption devices,
  • modeling jet milling devices and installations for the combustion of solid fuels in oxygen-enriched atmospheres (oxy-fuel technology),
  • selecting optimal designs of heat exchangers used in adsorption beds of refrigeration devices,
  • optimizing construction and operational parameters of energy devices and systems,
  • modeling the combustion of solid fuels in chemical looping and CO2 sequestration in calcium looping (CaL technology).

Laboratory Equipment:

  • Intensified Heat Transfer Adsorption Bed (IHTAB) reactor prototype,
  • a prototype cylindrical adsorption bed,
  • Radwag MA X2.A moisture analyzer,
  • Fritsch Analysette 3 SPARTAN vibrating sieve shaker,
  • Bandelin Sonorex RK 106 ultrasonic cleaner,
  • Levenhuk D740T 5.1M digital microscope,
  • computing units dedicated to advanced numerical calculations, equipped with peripheral hardware and software for modeling and conducting CFD and AI simulations (Ansys Fluent, Matlab, DataRobot, BigML, CeSFaMB, FuzzyLite).

A research stand for the analysis of sorption processes with a data acquisition system

Scientific Achievements (2017-2024):

Over the past few years, the members of the Laboratory of Adsorption Technology Research have developed the following publications:

1.Krzywanski J., Skrobek D., Sosnowski M., Ashraf W.M., Grabowska K., Zylka A., Kulakowska A., Nowak W., Sztekler K., Shahzad M.W., Towards enhanced heat and mass exchange in adsorption systems: The role of AutoML and fluidized bed innovations, (2024) International Communications in Heat and Mass Transfer, 152, art. no. 107262, DOI: 10.1016/j.icheatmasstransfer.2024.107262

2.J. Krzywanski, W. Nowak, D. Skrobek, A. Zylka, Waqar Muhammad Ashraf, K. Grabowska, M. Sosnowski, A. Kulakowska, T. Czakiert, Y. Gao, Modeling of bed-to-wall heat transfer coefficient in fluidized adsorption bed by gene expression programming approach, Powder Technology (in press), 2024, DOI: https://doi.org/10.1016/j.powtec.2024.120392

3.J. Krzywanski, T. Czakiert, W. Nowak, T. Shimizu, W.M. Ashraf, A. Zylka, K. Grabowska, M. Sosnowski, D. Skrobek, K. Sztekler, A. Kijo-Kleczkowska, I. Iliev, Towards cleaner energy: an innovative model to minimize NOₓ emissions in chemical looping and CO₂ capture technologies, Energy, 2024, 133397, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2024.133397.

4.Atta, M.S.; Khan, H.; Ali, M.; Tariq, R.; Yasir, A.U.; Iqbal, M.M.; Din, S.U.; Krzywanski, J. Simulation of Vacuum Distillation Unit in Oil Refinery: Operational Strategies for Optimal Yield Efficiency. Energies 2024, 17, 3806. https://doi.org/10.3390/en17153806

5.Krzywanski, J.; Sosnowski, M.; Grabowska, K.; Zylka, A.; Lasek, L.; Kijo-Kleczkowska, A. Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials 2024, 17, 3521. https://doi.org/10.3390/ma17143521

6.Krzywanski, J.; Sztekler, K.; Skrobek, D.; Grabowska, K.; Ashraf, W.M.; Sosnowski, M.; Ishfaq, K.; Nowak, W.; Mika, L. AutoML‐based Predictive Framework for Predictive Analysis in Adsorption Cooling and Desalination Systems. Energy Science & Engineering 2024, 12, 1969–1986. doi:10.1002/ese3.1725

7.Lasek, L.; Krzywanski, J.; Skrobek, D.; Zylka, A.; Nowak, W. Review of Micro- and Nanobubble Technologies: Advancements in Theory and Applications and Perspectives on Adsorption Cooling and Desalination Systems. Energies 2023, 16, 8078. https://doi.org/10.3390/en16248078

8.Grabowska, K.; Krzywanski, J.; Zylka, A.; Kulakowska, A.; Skrobek, D.; Sosnowski, M.; Ščurek, R.; Nowak, W.; Czakiert, T. Implementation of Fluidized Bed Concept to Improve Heat Transfer in Ecological Adsorption Cooling and Desalination Systems. Energies 2024, 17, 379. https://doi.org/10.3390/en17020379

9.J. Krzywanski, D. Skrobek, A. Zylka, K. Grabowska, A. Kulakowska, M. Sosnowski, W. Nowak, A.M. Blanco-Marigorta, Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach, Applied Thermal Engineering 225 (2023) 120200

10.Grabowska K., Sztekler K., Krzywanski J., Sosnowski M., Stefanski S., Nowak W., Construction of an innovative adsorbent bed configuration in the adsorption chiller. Part 2. experimental research of coated bed samples, Energy, 215, 2021, 119123

11.Lasek, L.; Zylka, A.; Krzywanski, J.; Skrobek, D.; Sztekler, K.; Nowak, W. Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies 2023, 16, 7311. https://doi.org/10.3390/en16217311Kashif Ishfaq, Muhammad Sana, Muhammad Umair Waseem, Waqar Muhammad Ashraf, Saqib Anwar and Jaroslaw Krzywanski, Enhancing EDM Machining Precision through Deep Cryogenically Treated Electrodes and ANN Modelling Approach, Micromachines 2023, 14, 1536

12.Anna Kulakowska, Anna Zylka, Jaroslaw Krzywanski, Dorian Skrobek, Karolina Grabowska, Marcin Sosnowski Wojciech Nowak, Influence of the Adsorption Bed Composition on the Low-Pressure Fluidization, Processes 2023, 11, 1912

13.Munir, M. A., Imran, S., Farooq, D. M., Latif, H., Hussain, A., Rehman, A. U., Sultan, M., & Krzywanski, J. M. Development of a supply chain model for the production of biodiesel from waste cooking oil for sustainable development. Frontiers in Energy Research, 11, 1222787

14.Ahsan Amjad, Waqar Muhammad Ashraf, Ghulam Moeen Uddin, Jaroslaw Krzywanski, Artificial intelligence model of fuel blendings as a step toward the zero emissions optimization of a 660MWe supercritical power plant performance, Energy Science & Engineering 2023;1–13

15.Waqar Muhammad Ashraf,* Ghulam Moeen Uddin, Rasikh Tariq, Afaq Ahmed, Muhammad Farhan, Muhammad Aarif Nazeer, Rauf Ul Hassan, Ahmad Naeem, Hanan Jamil, Jaroslaw Krzywanski, Marcin Sosnowski, and Vivek Dua, Artificial Intelligence Modeling-Based Optimization of an Industrial-Scale Steam Turbine for Moving toward Net-Zero in the Energy Sector, ACS Omega 2023, 8, 24, 21709–21725

16.Agnieszka Kijo-Kleczkowska, Adam Gnatowski, Barbara Tora, Krzysztof Kogut, Krzysztof Bytnar, Jaroslaw Krzywanski, Dorota Makowska, Research on Waste Combustion in the Aspect of Mercury Emissions, Materials 2023, 16, 3213

17.Dorian Skrobek, Jaroslaw Krzywanski, Marcin Sosnowski, Ghulam Moeen Uddin, Waqar Muhammad Ashraf, Karolina Grabowska, Anna Zylka, Anna Kulakowska, Wojciech Nowak, Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives, Energies 2023, 16, 3441

18.Shahid, I., Hussain, G., Anis, M., Farooq, M. U., Usman, M., Fouad, Y., Krzywanski, J. (2023). Enzymatic co-fermentation of onion waste for bioethanol production using saccharomyces cerevisiae and pichia pastoris. Energies, 16(5)

19.Tabish, Asif Nadeem, Farhat, Iqra, Irshad, Muneeb, Hussain, Muhammad Asif, Usman, Muhammad, Chaudhary, Tariq Nawaz Chaudhary, Yasser Fouad, Sohaib Raza, Waqar Muhammad Ashraf. Jaroslaw Krzywanski, Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment, Energies 2023, 16, 2760

20.Muhammad Usman, Talha Khan, Fahid Riaz, Muhammad Ali Ijaz Malik, Muhammad Tahir Amjad, Muhammad Haris Shah, Waqar Muhammad Ashraf,* Jaroslaw Krzywanski, and Wojciech Nowak, „Acetone−Gasoline Blend as an Alternative Fuel in SI Engines: A Novel Comparison of Performance, Emission, and Lube Oil Degradation, ACS Omega 2023, 8, 11267 - 11280

21.Iqra Shahid, Ghulam Hussain, Mehwish Anis, Muhammad Umar Farooq, Muhammad Usman ,Yasser Fouad, Jaroslaw Krzywanski, Production Using Saccharomyces cerevisiae and Pichia pastoris, Energies 2023, 16, 2181

22.Kaleem, M., Ali, M., Sheikh, N. A., Akhtar, J., Tariq, R., Krzywanski, J. (2023). Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings. Energies, 2023, 16(3), 1298

23.Grabowska K., Krzywanski J., Sosnowski M., Skrobek D., Artificial Intelligence and Computational Issues in Engineering Applications, Entropy 2023, 25, 5

24.Muhammad Rizwan, Shehbaz Ahmad, Syed Nasir Shah, Muzaffar Ali, Mansoor Ul Hassan Shah, Muhammad Zaman, Humbul Suleman, Muddasar Habib, Rasikh Tariq, Jaroslaw Krzywanski, Optimizing the Air Conditioning Layouts of an Indoor Built Environment: Towards the Energy and Environmental Benefits of a Clean Room, Buildings 2022, 12, 2158

25.Jawad Sarwar, Awais Ahmed Khan, Arshad Khan, Ali Hasnain, Syed Muhammad Arafat, Hafiz Umar Ali, Ghulam Moeen Uddin, Marcin Sosnowski, and Jaroslaw Krzywanski, Impact of Stakeholders on Lean Six Sigma Project Costs and Outcomes during Implementation in an Air-Conditioner Manufacturing Industry, Processes 2022, 10, 2591Muhammad Usman, Muhammad Ali Ijaz Malik, Rehmat Bashir, Fahid Riaz, Muhammad Juniad Raza, Khubaib Suleman, Abd-ul Rehman, Waqar Muhammad Ashraf, Jaroslaw Krzywanski, Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability, Energies 2022, 15, 8253

26.Krzywanski, J., Czakiert, T., Zylka A., Nowak, W., Sosnowski M., Grabowska, K., Skrobek, D., Sztekler K., Kulakowska A., Ashraf W.M., Gao Y., (2022). Modelling of SO₂ and NOₓ Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach. Energies, 2022, 15, 8095.

27.Tauseef Aized, Muhammad Rashid, Fahid Riaz, Ameer Hamza, Hafiz Zahid Nabi, Muhammad Sultan, Waqar Muhammad Ashraf, Jaroslaw Krzywanski, Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants, Energies, 2022, 15, 7246.

28.Skrobek D., Krzywanski J., Sosnowski M., Kulakowska A., Zylka A., Grabowska K., Ciesielska K., Nowak W., Implementation of deep learning methods in prediction of adsorption processes, Advances in Engineering Software, 173 (2022) 103190.

29.J. Krzywanski, Advanced AI Applications in Energy and Environmental Engineering, Energies, 2022, 15, 5621.

30.M. Gao, Y. Xiao, Z. Chen, L. Ding, Y. Gao, Z. Dai, G. Yu, J. Krzywanski, F. Wang, Comparison of physicochemical properties and gasification reactivity of soot from entrained flow gasification processes, Chemical Engineering Journal, 450 (2022) 136660.

31.J. Krzywanski, W. Nowak, K. Sztekler, Novel Combustion Techniques for Clean Energy, Energies, 2022, 15, 4649.

32.Zhekun Chen, Weitong Pan, Dingsong Yao, Ming Gao, Yunfei Gao, Xueli Chen, Jaroslaw Krzywanski, and Fuchen Wang, Crack evolution during the film drying process of fuel cell microporous layer ink, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650 (2022) 129283.

33.Pajdak A., Kulakowska A., Liu J., Berent K., Kudasik M., Krzywanski J., Kalawa W., Sztekler K., Skoczylas N., Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT—Potential Applications in Adsorption Cooling and Desalination Technology, Applied Sciences, 2022, 12, 5644.

34.Sosnowski M., Krzywanski J., Skoczylas N., Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance, Energies, 2022, 15, 4036.

35.Krzywanski, J., Czakiert, T., Nowak, W., Shimizu, T., Żyłka, A., Idziak, K., Sosnowski M., Grabowska, K. (2022). Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: A comprehensive model. Energy, 251, 12389.

36.Gnatowski A., Kijo-Kleczkowska A., Krzywanski J., Lemanski P., Kobciszewska E., Computer Simulations of Injection Process of Elements Used in Electromechanical Devices, Materials, 2022, 15, 2511.

37.Jaroslaw Krzywanski, Waqar Muhammad Ashraf, Tomasz Czakiert, Marcin Sosnowski, Karolina Grabowska, Anna Zylka, Anna Kulakowska, Dorian Skrobek, Sandra Mistal, and Yunfei Gao, CO₂ Capture by Virgin Ivy Plants Growing up on the External Covers of Houses as a Rapid Complementary Route to Achieve Global GHG Reduction Targets, Energies, 2022, 15, 1683.

38.Czakiert T., Krzywanski J., Zylka A., Nowak W., Chemical Looping Combustion: A Brief Overview, Energies, 2022, 15, 1563.

39.Gnatowski A., Kijo-Kleczkowska A., Suchecki Ł., Palutkiewicz P., Krzywański J., Analysis of Thermomechanical Properties of Polyethylene with Cement Addition, Materials, 2022, 15, 1587.

40.Otwinowski H., Krzywanski J., Urbaniak D., Wylecial T., Sosnowski M., Comprehensive Knowledge-Driven AI System for Air Classification Process, Materials, 2022, 15, 45.

41.Grabowska K., Krzywanski J., Nowak W., Wesolowska M., Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair, Energy, 2018, 151, 317-323

42.Krzywanski J., Fan H., Feng Y., Shaikh A.R., Fang M., Wang Q., Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers, Energy Conversion and Management, 2018, 171, 1651-1661

43.Krzywanski J., Grabowska K., Herman F., Pyrka P., Sosnowski M., Prauzner T., Nowak W., Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks, Energy Conversion and Management, 2017, 153, 313-322

44.Krzywanski J., A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods, Energies, 2019, 12 (23), 4441, 1-32

45.Krzywanski J., Heat Transfer Performance in a Superheater of an Industrial CFBC Using Fuzzy Logic-Based Methods, Entropy, 2019, 21, (10), 919, 1-14

46.Krzywański J., Modeling of energy systems with fixed and moving porous media by artificial intelligence methods, Scientific Monograph, University of Warmia and Mazury in Olsztyn, ISBN 978-83-60493-05-2, Olsztyn, 2018

47.Skrobek D., Krzywański J., Sosnowski M., Kulakowska A., Zylka A., Grabowska K., Ciesielska K., Nowak W., Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory), Energies 2020, 13, 6601

48.Sztekler K., Kalawa W., Nowak W., Mika L., Gradziel S., Krzywanski J., Radomska E., Experimental Study of Three-Bed Adsorption Chiller with Desalination Function, Energies 2020, 13, 582

49.Krzywanski J., Urbaniak D., Otwinowski H., Wylecial T., Sosnowski M., Fluidized Bed Jet Milling Process Optimized for Mass and Particle Size with a Fuzzy Logic Approach, Materials, 2020, 13 (15), 3303, 1-19

50.Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł., A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 1. The CFD Model of a Large-Scale Multi-Fuel CFB Combustion. Entropy 2020, 22, 964

51.Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł., A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 2. Numerical Simulations of Coal and Syngas Co-Combustion, Entropy 2020, 22, 856

52.Ashraf W.M., Uddin G.M., Farooq Muhammad, Riaz F., Ahmad A, Afghan S., Kamal A.H., Anwar S., El‐Sherbeeny A., M., Khan M.H., Hafeez N., Ali A., Samee A., Naeem M.A, Jamil A., Hassan H.A., Muneeb M., Chaudhary I.A., Sosnowski M., Krzywanski J., Construction of Operational Data‐Driven Power Curve of a Generator by Industry 4.0 Data Analytics, Energies 2021, 14, 1227

53.Zylka A., Krzywanski J., Czakiert T., Idziak K., Sosnowski M., Marcio Luiz de Souza-Santos, Sztekler K., Nowak W., Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier, Energies 2020, 13(20), 5394

54.Kulakowska A., Pajdak A., Krzywanski J., Grabowska K, Zylka A., Sosnowski M., Wesolowskia M., Sztekler K., Nowak W., Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed, Energies, 2020, 13 (6), 1-15

55.Sztekler K., Stefański S., Kalawa W., Mlonka-Medrala A., Nowak W., Mika Ł., Krzywanski J., Grabowska K., M. Sosnowski, Debniak M., The Effect of Adhesive Additives on Silica Gel Water Sorption Properties, Entropy, 2020, 22 (3), 1-15

56.Idziak K., Czakier T., Krzywanski J., Zylka A., Kozlowska M., Nowak W., Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn- and Fe-based oxygen carriers in CLC/CLOU applications: An overview, Fuel, 2020, 268, 117245, 1-8

57.Sztekler K., Kalawa W., Mika L., Krzywanski J., Grabowska K., Sosnowski M., Nowak W., Siwek T., Bieniek A., Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller, Energies, 2020, 13, (3), 515, 1-12

58.Ashraf W.M., Uddin G.M., Arafat S.M., Afghan S., Kamal A.H., Asim M., Khan M.H., Rafique M.W., Nauman U., Niazi S.G., Jamil H., Jamil A., Hayat N., Ahmad A., Changkai S., Xiang L.B, Chaudhary I.A., Krzywanski J., Optimization of a 660 MWe Supercritical Power Plant Performance–A Case of Industry 4.0 in the Data-Driven Operational Management. Part 1. Thermal Efficiency, Energies, 2020, 13, 5592

59.Ashraf W.M., Uddin G.M., Kamal A.H., Khan M.H., Khan A.A., Ahmad H.A., Ahmed F., Hafeez N., Sami R.M.Z., Arafat S.M., Niazi S.G., Rafique M.W., Amjad A., Hussain J., Jamil H., Shahbaz M., Krzywanski J., Optimization of a 660 MWe supercritical power plant performance – a case of Industry 4.0 in the data-driven operational management. Part 2. Power generation, Energies, 2020, 13, 5619

60.Sosnowski M., Krzywanski J., Scurek R., A Fuzzy Logic Approach for the Reduction of Mesh-Induced Error in CFD Analysis: A Case Study of an Impinging Jet, Entropy, 2019, 21, 1047, 1-19

61.Krzywanski J., Grabowska K., Sosnowski M., Zylka A., Sztekler K., Kalawa W., Wójcik T., Nowak W., An Adaptive Neuro-Fuzzy model of a Re-Heat Two-Stage Adsorption Chiller, Thermal Science, 2019, 23, S1053-S1063

62.Zylka A., Krzywanski J., Czakiert T., Idziak K., Sosnowski M., Grabowska K., Prauzner T., Nowak W., The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system, Fuel, 2019, 255, 1, 115776

63.Idziak K., Czakiert T., Krzywanski J., Zylka A., Nowak W., Studies on Solids Flow in a Cold Model of a Dual Fluidized Bed Reactor for Chemical Looping Combustion of Solid Fuels, Journal of Energy Resources Technology, 2020, 142 (2), 515

64.Sztekler K., Kalawa W., Stefański S., Krzywanski J., Grabowska K., Sosnowski M., Wójcik T., Nowak W., Using adsorption chillers for utilising waste heat from power plants. Thermal Science, 2019, 23, S1143-S1151

65.Krzywanski J., Czakiert T., Shimizu T., Majchrzak-Kuceba I., Shimazaki Y., Zylka A., Grabowska K., Sosnowski M., NOX Emissions from Regenerator of Calcium Looping Process, Energy & Fuels, 2018, 32, 6355-6362

66.Krzywanski J., Wesolowska M., Blaszczuk A., Majchrzak A., Komorowski M., Nowak W., Fuzzy logic and bed-to-wall heat transfer in a large-scale CFBC, International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 254-266

67.Grabowska K., Sosnowski M., Krzywanski J., Sztekler K., Kalawa W., Zylka A., Nowak W., The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller, Journal of Thermal Science, 2018, 27, 421-426

68.Sosnowski M., Gnatowska R., Grabowska K., Krzywanski J., Jamrozik A., Numerical Analysis of Flow in Building Arrangement: Computational Domain Discretization, Applied Sciences-Basel, 2019, 9, 941

69.Krzywanski J., Zylka A., Czakiert T., Kulicki K., Jankowska S., Nowak W., A 1.5D Model of a Complex Geometry Laboratory Scale Fluidized Bed CLC Equipment, Powder Technology, 2017, 316, 592-598

70.Blaszczuk A., Nowak W., Krzywanski J., Effect of bed particle size on heat transfer between fluidized bed of group B particles and vertical rifled tubes, Powder Technology, 2017, 316, 111-122

71.Krzywanski J., Grabowska K., Sosnowski M., Zylka A., Kulakowska A., Czakiert T., Sztekler K., Wesolowska M., Nowak W., Heat transfer in adsorption chillers with fluidized beds of silica gel, zeolite, and carbon nanotubes, Heat Transfer Engineering, 2021, 43, (3-5)

72.Sztekler K., Kalawa W., Nowak W., Mika L., Grabowska K., Krzywanski J., Sosnowski M., Ahmed A. Al-Harbi, Performance evaluation of a single-stage two-bed adsorption chiller with desalination function, Journal of Energy Resources Technology, 2021, 143(8):082101, Paper No: JERT-19-1826

73.Krzywanski J., Grabowska K., Sosnowski M., Żyłka A., Sztekler K., Kalawa W., Wójcik T., Nowak W., Modeling of a re-heat two-stage adsorption chiller by AI approach, MATEC Web of Conferences, 2018, 240, 05014

74.Kalawa W., Grabowska K., Sztekler K., Krzywański J., Sosnowski M., Stefański S., Siwek K., Nowak W., Progress in design of adsorption refrigeration systems. Evaporators, EPJ Web of Conferences, 2019, 213, 02035

75.Grabowska K., Sosnowski M., Krzywanski J., Sztekler K., Kalawa W., Zylka A., Nowak W., Analysis of heat transfer in a coated bed of an adsorption chiller, MATEC Web of Conferences, 2018, 240, 01010

76.Sztekler K., Kalawa W., Stefański S., Krzywanski J., Grabowska K., Sosnowski M., Nowak W., The influence of adsorption chillers on CHP power plants, MATEC Web of Conferences, 2018, 240, 05033

77.Sztekler K., Kalawa W., Nowak W., Stefański S., Krzywański J., Grabowska K., Using of the adsorption chillers for the utilization of waste heat from the CCS installation, EPJ Web of Conferences, 2018, 180, 02106

78.Sztekler K., Kalawa W., Nowak W., Stefański S., Krzywański J., Grabowska K., Using of the adsorption chillers for the utilization of waste heat from rotary kilns, EPJ Web of Conferences, 2018, 180, 02105

79.Sosnowski M., Krzywanski J., Gnatowska R., Polyhedral meshing as an innovative approach to computational domain discretization of a cyclone in a fluidized bed CLC unit, E3S Web of Conferences, 2017, 14, 01027

80.Sosnowski M., Krzywanski J., Grabowska K., Gnatowska R., Polyhedral meshing in numerical analysis of conjugate heat transfer, EPJ Web of Conferences, 2018, 180, 02096

81.Zylka A., Krzywanski J., Czakiert T., Idziak K., Kulicki K., Jankowska S., Nowak W., Numerical Simulations of Fluidization Dynamics in a Hot Model of a CLC Process, E3S Web of Conferences, 2017, 13, 04002

82.Sztekler K., Kalawa W., Stefański S., Mika L., Krzywański J., Grabowska K., Nowak W., Integration adsorption chillers with conventional power plant, E3S Web of Conferences, 2019, 108, 01011

83.Sztekler K., Kalawa W., Nowak W., Stefański S., Krzywański J., Grabowska K., Mika Ł., Possibility of use adsorption chillers for increase efficiency in conventional power plant, EPJ Web of Conferences, 2019, 213, 02082, EFM 2018

84.Koza P., Krzywański J., Nowa metoda oceny ryzyka zawodowego - Risk Analysis, International Journal of Engineering and Safety Sciences, 2020, Vol. 1, pp.69-84

85.Sztekler K., Kalawa W., Mlonka-Medrala A., Sowa M., Nowak W., Mika L., Krzywanski J., Grabowska K., Influence of additives in silica gel on water vapor kinetics sorption, Proc. of the 6th International Conference on Contemporary Problems of Thermal Engineering CPOTE 2020, 21-24 September 2020, Poland, pp. 193 – 202

86.Krzywanski J., Grabowska K., Sosnowski M., Zylka A., Czakiert T., Sztekler K., Wesolowska M., Nowak W., Heat transfer in fluidized and fixed beds of adsorption chillers, E3S Web of Conferences, 2019, 128, 01003

87.Zylka A., Krzywanski J., Sosnowski M., Grabowska K., De Souza-Santos M.L., Czakiert T., Idziak K., Nowak W., Modeling of fluidized bed dynamics in Hybrid Chemical Looping Combustion process, The XXIVth Int. Symp. on Combustion Processes, September 23-25, 2019, Wrocław, Poland, The book of abstracts, 2020, 83-84

88.Sztekler K., Kalawa W., Mika Ł., Krzywanski J., Grabowska K., Sosnowski M., Lis Ł., Nowak W., Siwek T., Integration adsorption chillers with combined cycle gas turbine, E3S Web of Conferences, 2019, 128, 01004

89.Grabowska K., Sosnowski M., Krzywański J., Sztekler K., Kalawa W., Żyłka A., Nowak W., Analysis of heat transfer in coated bed of adsorption chiller, XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018), May 21-24, 2018, Cracow, Poland, Book of abstracts, 2018, 198

90.Sosnowski M., Grabowska K., Krzywanski J., Nowak W., Sztekler K., Kalawa W., The effect of heat exchanger geometry on adsorption chiller performance, IOP Conf. Series: Journal of Physics: Conf. Series, 2018, 1101, 012037

91.Sztekler K., Kalawa W., Nowak W., Stefański S., Mika Ł., Siwek T., Krzywanski J., Sosnowski M., Grabowska K., Alharbi A.A., Experimental study of two-bed adsorption chiller with desalination, ECOS 2019 – Proc. of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2019, 3143-3151

92.Sosnowski M., Krzywanski J., Grabowska K., Makowska-Janusik M., Nowak W., Sztekler K., Yousef A., Implementation of a honeycomb bed in an adsorption cooling technology, ECOS 2019 – Proc. of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2019, 2521-2530

93.Krzywański J., Nowak W., Grabowska K., Sosnowski M., Prauzner T., Widuch A., Herman F., Wesołowska M., A regression analysis-based model of a tri-bed adsorption chiller using low-temperature heat from cogeneration, [in:] Bury T., Szlęk A., (eds.), Współczesne Problemy Termodynamiki, Proc. of the 23rd National Congress of Thermodynamics, Ustroń, Poland, September 19–22, 2017, 707-718, ISBN 978-83-61506-41-6

94.Grabowska K., Krzywański J., Nowak W., Wesołowska M., Budowa innowacyjnej konfiguracji złoża sorbentu w adsorpcyjnym agregacie chłodniczym – kryterium doboru optymalnej pary sorbent – klej, [in:] Bury T., Szlęk A., (eds.), Współczesne Problemy Termodynamiki, Proc. of the 23rd National Congress of Thermodynamics, Ustroń, Poland, September 19–22, 2017, 143-154, ISBN 978-83-61506-41-6

95.Krzywanski J., Zylka A., Czakiert T., Kulicki K., Jankowska S., Idziak K., Grabowska K., Pajdak A., Nowak W., Modeling of Solid Fuels Combustion in a Complex Geometry CLC Equipment, [in:] Nowak W., Ściążko M., Mirek P. (eds.), Proc. of the 12th International Conference on Fluidized Bed Technology, May 23-26, 2017, Kraków, 965-972

96.Sztekler K., Stefański S., Kalawa W., Krzywański J., Grabowska K., Możliwość zastosowania chłodziarek adsorpcyjnych z funkcją chłodzenia/odsalania napędzanych niskotemperaturowym ciepłem odpadowym, [in:] Pikoń K., Bogacka M., (eds.), Współczesne Problemy Ochrony Środowiska i Energetyki 2017, Politechnika Śląska, Gliwice, 35-40

97.Zylka A., Krzywanski J., Czakiert T., Idziak K., Sosnowski M., Grabowska K., Prauzner T., Nowak W., Numerical Simulations of CuO-based Oxygen Carrier CLC by the use of CeSFaMB the 4th Generation, [in:] Stanek W., Czarnowska L., Kostowski W., Gładysz P., (eds.), Energy Systems in the Near Future: Energy, Exergy, Ecology and Economics, Proc. of the 5th International Conference on Contemporary Problems of Thermal Engineering, Silesian University of Technology, Gliwice, Poland, September 18-21, 2018, 251-263

98.Zylka A., Krzywanski J., Sosnowski M., Czakiert T., Idziak K., De Souza-Santos M., Nowak W., Effects of temperature on oxygen transport in the CLC process, XXIV International Symposium on Combustion Processes, September 23-25, 2019, Wrocław, Poland, Book of abstracts, 2019, 83-84

99.Czakiert T., Idziak K., Krzywanski J., Zylka A., Nowak W., Investigations on Solid Fuels Combustion in Chemical-Looping Fluidized-Bed System, Book of Abstracts of the Joint Meeting of the Polish and Scandinavian-Nordic Sections of the Combustion Institute, PSN 2018, Cracow, Poland, September 6-7, 2018, 139-141

100.Krzywanski J., Shimizu T., Czakiert T., Zylka A., Grabowska K., Sosnowski M., de Souza-Santos M.L., Nowak W., Fuzzy Logic-based Model of NOX Emissions from Regenerator of Calcium Looping Process, Book of Abstracts of the Joint Meeting of the Polish and Scandinavian-Nordic Sections of the Krzywański J., Selected artificial intelligence methods in modeling of energy devices and systems, 2nd Workshop on Porous Media, 28 – 30 June 2018, Olsztyn, Poland, Book of Abstracts, 21

101.Krzywański J., Techniczno-organizacyjne aspekty bezpieczeństwa przy wykonywaniu robót budowlanych, Materiały V Międzynarodowej Konferencji Naukowej: Inżynieria Bezpieczeństwa a Zagrożenia Cywilizacyjne, Częstochowa, 14-15.06.2018r., Książka streszczeń, 35

102.Krzywanski J., Artificial Intelligence in the Energy Engineering, International Conference on Energy, Power and Environmental Engineering (ICEPEE2017), April 23-24, 2017, Shanghai, China, Book of abstracts

103.Grabowska K., Krzywanski J., Sosnowski M., Nowak W., Wesolowska M., Sztekler K., Widuch A., Engineering Approach to Modeling of a Sorption Bed of a Single-Stage Adsorption Chiller, 2017 International Conference on Energy, Power and Environmental Engineering (ICEPEE2017), April 23-24, Shanghai, China, Book of abstracts

104.Czakiert T., Kulicki K., Idziak K., Krzywanski J., Zylka A., Jankowska S., Nowak W., Experiences from the Operation of a Fluidized-Bed Chemical-Looping-Combustion Solid-Fuels Test Rig, [in:] Nowak W., Ściążko M., Mirek P. (eds.), Proc. of the 12th International Conference on Fluidized Bed Technology, 23-26 May 2017, Kraków, 1045-1046

105.Zylka A., Krzywanski J., Czakiert T., Idziak K., Kulicki K., Jankowska S., Nowak W., A 1.5D Model for the Chemical Looping Combustion System with Ilmenite, Proc. of the 8th European Combustion Meeting, Dubrovnik, Croatia, April 18-21, 2017, 1785-1790

106.Idziak K., Kulicki K., Jankowska S., Czakiert T., Zylka A., Krzywanski J., Nowak W., Emissions of NOX and SOX from Fluidized-Bed Chemical-Looping Combustion of Solid-Fuel (FB-CLC-SF) with Ilmenite as an Oxygen Carrier, Proc. of the 8th European Combustion Meeting, Dubrovnik, Croatia, April 18-21, 2017, 1769-1774

107.Krzywański J., Prawne aspekty bezpieczeństwa chemicznego, Materiały Międzynarodowej Konferencji Naukowej: Bezpieczeństwo chemiczne a ochrona zdrowia, Międzynarodowa Konferencja Naukowa „Bezpieczeństwo chemiczne a ochrona zdrowia” 10-11.10.2017, AGH Kraków, Poland, książka streszczeń, 20

108.Żyłka A., Krzywański J., Czakiert T., Idziak K., Sosnowski M., Grabowska K., Nowak W., The CeSFaMB simulator in modeling of CLC process, International Conference of Environmental Biotechnology 12th December 2017, Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering Czestochowa, Poland, ISBN 978-83-949796-0, Book of Abstracts, 37 – 38

109.Idziak K., Czakiert T., Zylka A., Krzywanski J., Nowak W., Fluidized-bed chemical looping combustion of solid fuel, International Conference of Environmental Biotechnology 12th December 2017, Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering Czestochowa, Poland, ISBN 978-83-949796-0, 19

110.Krzywanski J., Nowak W., Grabowska K., Widuch A., Wesolowska M. Chłodniej. Minimalizacja rozmiarów chłodziarek adsorpcyjnych wykorzystywanych do produkcji wody lodowej cz. 1., Energetyka Cieplna i Zawodowa, 2017, 3, 56-64

111.Krzywanski J., Nowak W., Grabowska K., Widuch A., Wesolowska M., Mocne w chłodzeniu. Minimalizacja rozmiarów chłodziarek adsorpcyjnych wykorzystywanych do produkcji wody lodowej cz. 2., Energetyka Cieplna i Zawodowa, 2017, 4, 30-35

112.Grabowska K., Krzywański J., Sosnowski M., Nowak W., Agregaty adsorpcyjne – Jak się sprawy mają? Energetyka Cieplna i Zawodowa, 2019, 5, 112-117

113.M. Sosnowski, R. Gnatowska, J. Sobczyk, and W. Wodziak, “Numerical modelling of flow field within a packed bed of granular material,” in Journal of Physics: Conference Series, 2018, vol. 1101, no. 1, p. 012036

114.M. Sosnowski, “The influence of computational domain discretization on CFD results concerning aerodynamics of a vehicle,” Journal of Applied Mathematics and Computational Mechanics, vol. 17, no. 1, pp. 79–88, 2018

115.M. Sosnowski, “Experimental and numerical analysis of multi-disc heat exchanger efficiency in adsorption chillers powered with waste heat,” Journal of Physics: Conference Series, vol. 1398, p. 012013, 2019

116.Gnatowski and M. Sosnowski, “Effect of PVP and Polybond compatibilizers on dynamic properties of polymer blends analyzed with DMTA,” Advances in Science and Technology Research Journal, vol. 12, no. 1, pp. 36–40, 2018

117.M. Sosnowski, R. Gnatowska, J. Sobczyk, and W. Wodziak, “Computational domain discretization for CFD analysis of flow in a granular packed bed,” Journal of Theoretical and Applied Mechanics, vol. 57, no. 4, pp. 833–842, 2019

118.R. Gnatowska, M. Sosnowski, and V. Uruba, “CFD modelling and PIV experimental validation of flow fields in urban environments,” in Energy and Fuels, vol. 14, Suwala, W. and Dudek, M. and Leszczynski, J. and Lopata, S., Ed. 2017

119.M. Sosnowski, “Computer aided optimization of a nozzle in around-the-pump fire suppression foam proportioning system,” Engineering Mechanics 2017, pp. 914–917, 2017

120.M. Sosnowski, “Computational domain discretization in numerical analysis of flow within granular materials,” in EPJ Web of Conferences, 2018, vol. 180, p. 02095

121.Gnatowski, M. Sosnowski, A. Pajdak, and J. Sobczyk, “Experimental study of thermal effects in cooling of circular cylinder in lock-on conditions,” Advances in Science and Technology. Research Journal, vol. 12, no. 2, 2018

122.M. Sosnowski, “Computational domain discretization in numerical analysis of forced convective heat transfer within packed beds of granular materials,” Engineering Mechanics 2018, pp. 801–804, 2018

123.R. Gnatowska and M. Sosnowski, “The influence of distance between vehicles in platoon on aerodynamic parameters,” in EPJ Web of Conferences, 2018, vol. 180, p. 02030

124.Jamrozik, W. Tutak, A. Gnatowski, R. Gnatowska, J. Winczek, and M. Sosnowski, “Modeling of Thermal Cycle CI Engine with Multi-Stage Fuel Injection,” Advances in Science and Technology. Research Journal, vol. 11, no. 3, pp. 179–186, 2017

125.M. Sosnowski, “Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology,” Energies, vol. 12, no. 24, 2019

126.Ashraf W.M., Uddin G.M., Arafat S.M., Afghan S., Kamal A.H., Asim M., Khan M.H., Rafique M.W., Nauman U., Niazi S.G., Jamil H., Jamil A., Hayat N., Ahmad A., Changkai S., Xiang L.B,Chaudhary I.A., Krzywanski J.,Optimization of a 660 MWe Sup ercritical Power Plant Performance–A Case of Industry 4.0 in the Data-Driven Operational Management. Part 1. Thermal Efficiency, Energies, 2020, 13, 5592


Head of the Laboratory: prof. dr hab. Jarosław Krzywański

E-mail: j.krzywanski@ujd.edu.pl

Tel. +48 693537236